Copied to
clipboard

G = C2×C21.C32order 378 = 2·33·7

Direct product of C2 and C21.C32

direct product, metabelian, supersoluble, monomial, 3-hyperelementary

Aliases: C2×C21.C32, C42.5C32, C1433- 1+2, C7⋊C96C6, (C3×C42).3C3, (C3×C21).8C6, C21.11(C3×C6), C76(C2×3- 1+2), (C2×C7⋊C9)⋊3C3, C6.5(C3×C7⋊C3), C3.5(C6×C7⋊C3), (C3×C6).(C7⋊C3), C32.(C2×C7⋊C3), SmallGroup(378,27)

Series: Derived Chief Lower central Upper central

C1C21 — C2×C21.C32
C1C7C21C3×C21C21.C32 — C2×C21.C32
C7C21 — C2×C21.C32
C1C6C3×C6

Generators and relations for C2×C21.C32
 G = < a,b,c,d | a2=b21=d3=1, c3=b7, ab=ba, ac=ca, ad=da, cbc-1=b4, bd=db, dcd-1=b7c >

3C3
3C6
7C9
7C9
7C9
3C21
7C18
7C18
7C18
73- 1+2
3C42
7C2×3- 1+2

Smallest permutation representation of C2×C21.C32
On 126 points
Generators in S126
(1 74)(2 75)(3 76)(4 77)(5 78)(6 79)(7 80)(8 81)(9 82)(10 83)(11 84)(12 64)(13 65)(14 66)(15 67)(16 68)(17 69)(18 70)(19 71)(20 72)(21 73)(22 96)(23 97)(24 98)(25 99)(26 100)(27 101)(28 102)(29 103)(30 104)(31 105)(32 85)(33 86)(34 87)(35 88)(36 89)(37 90)(38 91)(39 92)(40 93)(41 94)(42 95)(43 110)(44 111)(45 112)(46 113)(47 114)(48 115)(49 116)(50 117)(51 118)(52 119)(53 120)(54 121)(55 122)(56 123)(57 124)(58 125)(59 126)(60 106)(61 107)(62 108)(63 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(1 62 26 8 48 33 15 55 40)(2 57 30 9 43 37 16 50 23)(3 52 34 10 59 41 17 45 27)(4 47 38 11 54 24 18 61 31)(5 63 42 12 49 28 19 56 35)(6 58 25 13 44 32 20 51 39)(7 53 29 14 60 36 21 46 22)(64 116 102 71 123 88 78 109 95)(65 111 85 72 118 92 79 125 99)(66 106 89 73 113 96 80 120 103)(67 122 93 74 108 100 81 115 86)(68 117 97 75 124 104 82 110 90)(69 112 101 76 119 87 83 126 94)(70 107 105 77 114 91 84 121 98)
(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)(85 92 99)(86 93 100)(87 94 101)(88 95 102)(89 96 103)(90 97 104)(91 98 105)(106 120 113)(107 121 114)(108 122 115)(109 123 116)(110 124 117)(111 125 118)(112 126 119)

G:=sub<Sym(126)| (1,74)(2,75)(3,76)(4,77)(5,78)(6,79)(7,80)(8,81)(9,82)(10,83)(11,84)(12,64)(13,65)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,73)(22,96)(23,97)(24,98)(25,99)(26,100)(27,101)(28,102)(29,103)(30,104)(31,105)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,94)(42,95)(43,110)(44,111)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,121)(55,122)(56,123)(57,124)(58,125)(59,126)(60,106)(61,107)(62,108)(63,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,62,26,8,48,33,15,55,40)(2,57,30,9,43,37,16,50,23)(3,52,34,10,59,41,17,45,27)(4,47,38,11,54,24,18,61,31)(5,63,42,12,49,28,19,56,35)(6,58,25,13,44,32,20,51,39)(7,53,29,14,60,36,21,46,22)(64,116,102,71,123,88,78,109,95)(65,111,85,72,118,92,79,125,99)(66,106,89,73,113,96,80,120,103)(67,122,93,74,108,100,81,115,86)(68,117,97,75,124,104,82,110,90)(69,112,101,76,119,87,83,126,94)(70,107,105,77,114,91,84,121,98), (22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56)(85,92,99)(86,93,100)(87,94,101)(88,95,102)(89,96,103)(90,97,104)(91,98,105)(106,120,113)(107,121,114)(108,122,115)(109,123,116)(110,124,117)(111,125,118)(112,126,119)>;

G:=Group( (1,74)(2,75)(3,76)(4,77)(5,78)(6,79)(7,80)(8,81)(9,82)(10,83)(11,84)(12,64)(13,65)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,73)(22,96)(23,97)(24,98)(25,99)(26,100)(27,101)(28,102)(29,103)(30,104)(31,105)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,94)(42,95)(43,110)(44,111)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,121)(55,122)(56,123)(57,124)(58,125)(59,126)(60,106)(61,107)(62,108)(63,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,62,26,8,48,33,15,55,40)(2,57,30,9,43,37,16,50,23)(3,52,34,10,59,41,17,45,27)(4,47,38,11,54,24,18,61,31)(5,63,42,12,49,28,19,56,35)(6,58,25,13,44,32,20,51,39)(7,53,29,14,60,36,21,46,22)(64,116,102,71,123,88,78,109,95)(65,111,85,72,118,92,79,125,99)(66,106,89,73,113,96,80,120,103)(67,122,93,74,108,100,81,115,86)(68,117,97,75,124,104,82,110,90)(69,112,101,76,119,87,83,126,94)(70,107,105,77,114,91,84,121,98), (22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56)(85,92,99)(86,93,100)(87,94,101)(88,95,102)(89,96,103)(90,97,104)(91,98,105)(106,120,113)(107,121,114)(108,122,115)(109,123,116)(110,124,117)(111,125,118)(112,126,119) );

G=PermutationGroup([[(1,74),(2,75),(3,76),(4,77),(5,78),(6,79),(7,80),(8,81),(9,82),(10,83),(11,84),(12,64),(13,65),(14,66),(15,67),(16,68),(17,69),(18,70),(19,71),(20,72),(21,73),(22,96),(23,97),(24,98),(25,99),(26,100),(27,101),(28,102),(29,103),(30,104),(31,105),(32,85),(33,86),(34,87),(35,88),(36,89),(37,90),(38,91),(39,92),(40,93),(41,94),(42,95),(43,110),(44,111),(45,112),(46,113),(47,114),(48,115),(49,116),(50,117),(51,118),(52,119),(53,120),(54,121),(55,122),(56,123),(57,124),(58,125),(59,126),(60,106),(61,107),(62,108),(63,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(1,62,26,8,48,33,15,55,40),(2,57,30,9,43,37,16,50,23),(3,52,34,10,59,41,17,45,27),(4,47,38,11,54,24,18,61,31),(5,63,42,12,49,28,19,56,35),(6,58,25,13,44,32,20,51,39),(7,53,29,14,60,36,21,46,22),(64,116,102,71,123,88,78,109,95),(65,111,85,72,118,92,79,125,99),(66,106,89,73,113,96,80,120,103),(67,122,93,74,108,100,81,115,86),(68,117,97,75,124,104,82,110,90),(69,112,101,76,119,87,83,126,94),(70,107,105,77,114,91,84,121,98)], [(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56),(85,92,99),(86,93,100),(87,94,101),(88,95,102),(89,96,103),(90,97,104),(91,98,105),(106,120,113),(107,121,114),(108,122,115),(109,123,116),(110,124,117),(111,125,118),(112,126,119)]])

58 conjugacy classes

class 1  2 3A3B3C3D6A6B6C6D7A7B9A···9F14A14B18A···18F21A···21P42A···42P
order1233336666779···9141418···1821···2142···42
size11113311333321···213321···213···33···3

58 irreducible representations

dim11111133333333
type++
imageC1C2C3C3C6C6C7⋊C33- 1+2C2×C7⋊C3C2×3- 1+2C3×C7⋊C3C6×C7⋊C3C21.C32C2×C21.C32
kernelC2×C21.C32C21.C32C2×C7⋊C9C3×C42C7⋊C9C3×C21C3×C6C14C32C7C6C3C2C1
# reps1162622222441212

Matrix representation of C2×C21.C32 in GL4(𝔽127) generated by

126000
0100
0010
0001
,
1000
06100
00870
00047
,
19000
0010
0001
010700
,
19000
0100
001070
00019
G:=sub<GL(4,GF(127))| [126,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,61,0,0,0,0,87,0,0,0,0,47],[19,0,0,0,0,0,0,107,0,1,0,0,0,0,1,0],[19,0,0,0,0,1,0,0,0,0,107,0,0,0,0,19] >;

C2×C21.C32 in GAP, Magma, Sage, TeX

C_2\times C_{21}.C_3^2
% in TeX

G:=Group("C2xC21.C3^2");
// GroupNames label

G:=SmallGroup(378,27);
// by ID

G=gap.SmallGroup(378,27);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,96,187,1359]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^21=d^3=1,c^3=b^7,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^4,b*d=d*b,d*c*d^-1=b^7*c>;
// generators/relations

Export

Subgroup lattice of C2×C21.C32 in TeX

׿
×
𝔽